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The degradation of heme by heme oxygenase (HO) involves
the formation of a heme-protein complex in which the heme-
iron coordinates to a neutral imidazole of histidine as in myoglobin
and hemoglobin,1,2 followed by three cycles of oxygenation in
which the heme binds and activates O2.3-5 The first monooxy-
genation step of HO catalysis is believed to convert the heme to
R-meso-hydroxyheme, and it has been proposed to proceed by
reduction of the O2-bound complex to a hydroperoxy-ferric active
intermediate, rather than the oxo-ferryl form believed to occur in
P450.3,4 However, to dateR-meso-hydroxyheme hasnot been
detected during physiological HO catalysis. We here use EPR
and ENDOR of oxy-ferrous HO reduced at 77 K to establish that
hydroperoxy-HO indeed catalyzes the formation ofR-meso-
hydroxyheme, and show that it can do so in situ at temperatures
above 200 K.

One-electron radiolytic cryoreduction6,7 of diamagnetic oxy-
hemoproteins in frozen solution at 77 K8-13 creates a paramag-
netic species in the environment of the precursor oxy-heme, before
relaxation of the heme pocket to equilibrium conformational
state.8-11 Figure 1 presents 2 K Q-band EPR spectra14 of the
species generated by 77 K cryoreduction7 of the dioxygen
complexes5,15of hemoglobinâ chains (oxy-â-Hb; 1A) and of HO
(1C), along with the spectra of these samples after annealing to

200 K (Figure 1, parts B and D, respectively). Each of the spectra
has the unmistakable signature of a low-spin ferriheme species,
g1 > g2 > ge > g3 in a strong ligand field (smallg dispersion),16

rather than that of a center where the major unpaired-spin density
resides on the dioxygen moiety,g1 ) gpar > g2, g3 ≈ ge, as in
dioxygen adducts of Co(II) complexes.17

Following the arguments in a companion study of P450cam,13

the ferri-heme primary product of cryoreduction of oxy-â-Hb at
77 K, whose EPR spectrum is characterized byg ) [2.24, 2.14,
1.96] (Figure 1A), is assigned as the end-on, (formally) “ferric-
peroxo”, species (denoted[FePO2]red). As shown earlier,8,10 at
180-200 K this converts to the hydroperoxy-ferriheme complex
whose EPR spectrum has a largerg-spread,g ) [2.31, 2.18, 1.94]
(Figure 1B). Proton ENDOR spectra14,18,19of theâ-Hb [FePO2]red

in H2O (Figure 2A) and D2O (not shown, but see Figure 2,D2O)
show the presence of a doublet for an exchangeable proton with
strong hyperfine coupling (A(g1) ≈ 14 MHz), assigned to a
hydrogen bond from the distal histidine to the “peroxo” moiety.10

The Q-band ENDOR measurements further show a signal from
the exchangeable proton of theâ-Hb hydroperoxo-ferric moiety,
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Figure 1. Q-band EPR spectra14 of oxy-â-Hb (A) and oxy-HO (C)
radiolytically reduced at 77 K. (B) and (D) are EPR spectra of these
same samples after annealing at 200 K and 180 K, respectively. Free
radical signals aroundg ) 2 are omitted for clarity.Conditions: T) 2
K, 35.12 GHz, 100 kHz detection. Modulation amplitude 2 G. The
derivative presentation was obtained digitally from absorption mode EPR
envelopes detected under these rapid passage conditions.
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with a significant, although lessened, hyperfine coupling (Figure
2B; A(g1) ≈ 8.2 MHz). Preliminary 2-D sets of spectra collected
across the EPR envelope18 indicate that the decrease reflects a
reduced isotropic interaction. The decrease in coupling, despite
the change from H-bond to covalent bond, likely reflects in part
a diminished spin density on the hydroperoxy moiety compared
to that on the peroxo one.

The EPR spectrum of oxy-HO reduced at 77 K (Figure 1C)
has a spread ing-values that is greater than that of even theâ-Hb
hydroperoxo-ferriheme complex, and indeed is substantially
greater than that of all previously studied cryo-reduced oxyhe-
moproteins and hydroperoxo-heme complexes.20 ENDOR spec-
troscopy reveals an interaction of an exchangeable proton, Figure
2C, whose hyperfine coupling is comparable to that of the proton
of the ferric-hydroperoxo-â-Hb, Figure 2B. Unlikeâ-Hb, anneal-
ing the cryoreduced HO sample to 180 K causes only a minimal
broadening in the EPR spectrum of cryoreduced HO, Figure 1D,
attributed to subtle structural relaxation of the heme pocket; there
is no change in the proton coupling. From these observations we
conclude that the O2 moiety of the precursor oxy-HO is stabilized
by an H-bond, as found previously,21 and that reduction of oxy-
HO at 77 K initially produces an H-bonded ferric-peroxo species,
[FePO2]red, that is not detected. Rather, it promptly convertsat
77 K, to the hydroperoxo-ferric-HO, which is the species actually
observed. A similar observation has been made for P450cam and
its T252A mutant.13 Given the absence of a distal histidine in
HO,22 the source of this proton is likely a sequestered water
molecule. The difference ing tensors for the hydroperoxo-ferric-
â-Hb and HO forms is attributed to a difference in the Fe-O-O
angle of the hydroperoxo ligand induced by differing interactions
with the distal pocket.23

Upon annealing the hydroperoxo-ferric-HO to temperatures
above 200 K its EPR spectrum disappears; it is gone after
warming from 77 K to 238 K for 1 min and then re-cooling to
77 K. To determine the fate of this species we collected EPR
spectra in theg ≈ 6 region, where high-spin ferrihemes show
their characteristicg⊥ signals. Oxy-HO cryoreduced at 77 K gives
a low-intensity, axial high-spin spectrum from residual ferric-
HO which is unchanged by annealing to∼200 K, Figure 3B.
The loss of the signal from the hydroperoxo-ferric-HO intermedi-
ate caused by annealing to 238 K is paralleled by a corresponding
increase in that from high-spin ferriheme, with a change in the
high-spin signal to that characteristic of a species with a rhombic
splitting of its g tensor, Figure 3A. Subtraction of the spectrum
of the residual ferric-HO (Figure 3B) from that of the 238
K-annealed sample gave Figure 3C, which corresponds to a high-
spin EPR species withg1 ) 6.07 andg2 ) 5.72. This is the
spectrum of high-spin ferricR-meso-hydroxyheme-HO, which is
the only species in the HO catalytic cycle that giVes such a
rhombic spectrum.24 We conclude that the heme of hydroperoxo-
ferric-HO self-hydroxylates to form theR-meso-hydroxoheme-
HO, in situ at temperatures aboVe 200 K.

This work for the first time demonstrates that one-electron
reduction of oxyferrous-HO yieldsR-meso-hydroxyheme, thereby
establishing that heme is catabolized through theR-meso-
hydroxyheme intermediate in HO catalysis. Our results further
corroborate the early proposal3 that HO falls into a new class of
heme-containing oxygenases with the hydroperoxo-ferric active
species.
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Figure 2. Q-band CW proton ENDOR spectra14 taken atg1 for reduced
oxy-â-Hb (A) and for hydroperoxy-HO (C), each generated by cryore-
duction at 77 K. The (1) represents the proton Larmor frequency (∼50
MHz); ( ), the hyperfine splitting, A. (B) is the ENDOR spectrum of
hydroperoxy-â-Hb produced by annealing cryoreduced oxy-â-Hb at 200
K. The ENDOR spectrum (D), labeledD2O,was taken with hydroperoxy-
HO in D2O buffer; a similar result is obtained with reduced oxy-â-Hb in
such buffer. Conditions:T ) 2 K; field modulation amplitude, 2G.

Figure 3. Low-field Q-band EPR spectra of cryoreduced HO-O2 after
annealing at 180 K (B) and 238 K (A); (C) ) (A) - (B). Conditions:as
in Figure 1.
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